翻訳と辞書
Words near each other
・ De Groene Molen, Joure
・ De Groeve
・ De Grolsch Veste
・ De Groot
・ De Groot dual
・ De Groote
・ De Groote Peel National Park
・ De Grootste Belg
・ De Grootste Nederlander
・ De Grote Donorshow
・ De Grote Molen, Broeksterwoude
・ De Grote Molen, Marrum
・ De Grote Sprong
・ De Grummond Children's Literature Collection
・ De grønne pigespejdere
De Gua's theorem
・ De Guanajuato...Para America!
・ De Guignes
・ De Gule Spejdere i Danmark – Baden-Powell spejderne
・ De Gulle Minnaar
・ De gustibus non est disputandum
・ De Gyldne Laurbær
・ De Güemes
・ De Haag, Beuningen
・ De Haan
・ De Haan's Bus & Coach
・ De Haan, Belgium
・ De Haar
・ De Haar, Assen
・ De Haar, Coevorden


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Gua's theorem : ウィキペディア英語版
De Gua's theorem
__notoc__
De Gua's theorem is a three-dimensional analog of the Pythagorean theorem and named for Jean Paul de Gua de Malves.
If a tetrahedron has a right-angle corner (like the corner of a cube), then the square of the area of the face opposite the right-angle corner is the sum of the squares of the areas of the other three faces.
: A_^2 = A_^2+A_^2+A_^2
==Generalizations==

The Pythagorean theorem and de Gua's theorem are special cases (''n'' = 2, 3) of a general theorem about ''n''-simplices with a right-angle corner. This, in turn, is a special case of a yet more general theorem, which can be stated as follows.〔Theorem 9 of James G. Dowty (2014). Volumes of logistic regression models with applications to model selection. 〕
Let ''P'' be a ''k''-dimensional affine subspace of \mathbb^n (so k \le n) and let ''C'' be a compact subset of ''P''. For any subset I \subseteq \ with exactly ''k'' elements, let C_I be the orthogonal projection of ''C'' onto the linear span of e_, \ldots, e_, where I = \ and e_1, \ldots, e_n is the standard basis for \mathbb^n. Then
:\mbox_k^2(C) = \sum_I \mbox_k^2(C_I),
where \mbox_k(C) is the ''k''-dimensional volume of ''C'' and the sum is over all subsets I \subseteq \ with exactly ''k'' elements.
This theorem is essentially the inner-product-space version of Pythagoras’ theorem applied to the ''k''th exterior power of ''n''-dimensional Euclidean space. De Gua's theorem and its generalisation (above) to ''n''-simplices with right-angle corners correspond to the special case where ''k'' = ''n''−1 and ''C'' is an (''n''−1)-simplex in \mathbb^n with vertices on the co-ordinate axes.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Gua's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.